欢迎访问机床与液压官方网站!

咨询热线:020-32385312 32385313 RSS EMAIL-ALERT
基于改进可学习攻击策略对抗训练轴承故障诊断研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河北省自然科学基金项目(E2022209086);河北省科技重大专项项目(22282203Z)


Research on Bearing Fault Diagnosis Based on Improved Adversarial Training with Learnable Attack Strategy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    引入可学习攻击策略对抗训练网络模型(LAS-AT)进行滚动轴承故障诊断时,存在特征提取能力不足、计算效率低和诊断精度低等问题。针对此,提出一种改进的LAS-AT(CDEW-LAS-AT)。为了提升LAS-AT的特征提取能力,将高效通道注意力机制(ECA)嵌入到网络结构的特征提取功能模块中,通过滚动轴承故障实验进行验证分析。结果表明:ECA注意力机制使模型的特征提取能力、收敛性、稳定性、精度均得到了有效提升,其精度提升了14.59%,损失值下降。为了改善模型的计算效率,将LAS-AT中的WideResNet中的普通卷积替换为深度可分离卷积,对模型的权重参数进行优化处理。结果表明:深度可分离卷积有效减少了网络的参数量、计算量和计算时延,降低了网络结构的规模,提高了网络诊断实时性和准确性;最后,为了再次提升模型的诊断精度,利用布谷鸟搜索优化算法(CS)对策略中的参数和生成对抗样本的参数进行优化处理。通过滚动轴承故障实验验证分析通过布谷鸟搜索优化算法进一步提升了模型的收敛性、稳定性和精度,其精度达到了94.52%,整体提升了37.88%。

    Abstract:

    When the adversarial training with learnable attack strategy network model(LAS-AT) is introduced into the rolling bearing fault diagnosis,the model has some problems such as insufficient feature extraction ability,low computational efficiency and low diagnostic accuracy.In view of these problems,an improved LAS-AT(CDEW-LAS-AT) was proposed.In order to improve the feature extraction ability of the LAS-AT,the efficient channel attention(ECA) was embedded into the feature extraction function module of the network structure,and the rolling bearing fault experiment was made to verify and analyze.The results show that the ECA attention mechanism has effectively improved the model′s feature extraction ability,convergence,stability and accuracy,with accuracy increases by 1459% and loss value decreases.In order to improve the computational efficiency of the model,the ordinary convolution in WideResNet was replaced by the deep separable convolution,and the weight parameters of the model were optimized.The results show that the deep separable convolution effectively reduces the number of parameters,computation and computational delay of the network,reduces the scale of the network structure,and improves the real-time and accuracy of network diagnosis.Finally,in order to improve the diagnostic accuracy again,the cuckoo search algorithm (CS) was used to optimize the parameters in the strategy and the disturbance parameters of the generated adversarial example.The convergence,stability and accuracy of the model are further improved by the cuckoo search optimization algorithm,and its accuracy reaches 94.52%,with an overall improvement of 37.88%.

    参考文献
    相似文献
    引证文献
引用本文

郑爱云,张聪,刘伟民,郑直.基于改进可学习攻击策略对抗训练轴承故障诊断研究[J].机床与液压,2025,53(14):24-32.
ZHENG Aiyun, ZHANG Cong, LIU Weimin, ZHENG Zhi. Research on Bearing Fault Diagnosis Based on Improved Adversarial Training with Learnable Attack Strategy[J]. Machine Tool & Hydraulics,2025,53(14):24-32

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-12
  • 出版日期: 2025-07-28
文章二维码