欢迎访问机床与液压官方网站!

咨询热线:020-32385312 32385313 RSS EMAIL-ALERT
基于深度学习与多传感器信息融合的液压系统故障诊断
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(61803219)


Fault Diagnosis of Hydraulic System Based on Deep Learning and Multi-sensor Information Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在多物理参数监测的工作场景下,液压系统的信号采集通常具有多时间尺度的特性,导致诊断过程中出现故障信息的损失和精度下降。为此提出一种基于深度学习与多传感器信息融合的故障诊断方法,采用多头1DCNN网络对温度、压力、流量等多传感器信号进行并行差异化的特征提取,通过减法平均优化器为不同采样率的信号输入确定合适的卷积核尺寸及滑动步长超参数,实现时间尺度上的进一步适配,同时提高网络的收敛速度。在特征融合阶段,引入注意力机制对权重进行动态分配,降低多传感器融合数据的过拟合风险。采用公开液压数据集进行分析和验证,并与多种方法进行对比。结果表明:所提方法能够有效提取和利用多传感器信号中的多方位故障信息进行诊断,且无需依赖专家知识,具有较高的准确性和稳定性。

    Abstract:

    In the working scenario of multi-physical parameter monitoring,the signal acquisition of hydraulic system often has the characteristic of multiple time scales,which leads to the loss of fault information and a decrease in accuracy during the diagnostic process.Therefore,a fault diagnosis method based on deep learning and multi-sensor information fusion was proposed.A multi-headed 1DCNN network was employed to perform parallel differential feature extraction on temperature,pressure,flow and other multi-sensor signals,and the subtraction-average-based optimizer was used to determine suitable convolution kernel sizes and sliding step hyperparameters for signal input with different sampling rates,thereby achieving further adaptation on the time scale and enhancing the convergence speed of the network.In the feature fusion stage,attention mechanism was introduced to dynamically allocate weights to reduce the overfitting risk of the fused multi-sensor data.A publicly available hydraulic dataset was utilized for analysis and validation,and compared with various methods.The results indicate that the proposed method can effectively extract and utilize multi-faceted fault information from multi-sensor signals for diagnosis,it requires no reliance on expert knowledge,and has high accuracy and stability.

    参考文献
    相似文献
    引证文献
引用本文

李贝利,张达.基于深度学习与多传感器信息融合的液压系统故障诊断[J].机床与液压,2025,53(14):171-180.
LI Beili, ZHANG Da. Fault Diagnosis of Hydraulic System Based on Deep Learning and Multi-sensor Information Fusion[J]. Machine Tool & Hydraulics,2025,53(14):171-180

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-12
  • 出版日期: 2025-07-28
文章二维码