Python使用Matplotlib绘制散点趋势线的代码详解

 更新时间:2025年01月08日 09:31:33   作者:python收藏家  
Matplotlib是一个用于数据可视化的强大Python库,其基本功能之一是创建带有趋势线的散点图,散点图对于可视化变量之间的关系非常有用,本文将指导您使用Matplotlib绘制散点趋势线的过程,涵盖线性和多项式趋势线,需要的朋友可以参考下

Matplotlib绘制散点趋势线

散点图是一种数据可视化,它使用点来表示两个不同变量的值。水平轴和垂直轴上每个点的位置表示单个数据点的值。散点图用于观察变量之间的关系。

1.创建基本散点图

让我们从创建一个基本的散点图开始。为了简单起见,我们将使用随机数据。

import matplotlib.pyplot as plt
import numpy as np

x = np.random.rand(50)
y = np.random.rand(50)

plt.scatter(x, y)
plt.title("Basic Scatter Plot")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()

2.添加线性趋势线

线性趋势线是最能代表散点图上数据的直线。要添加线性趋势线,我们可以使用NumPy的polyfit()函数来计算最佳拟合线。

# Calculate the best-fit line
z = np.polyfit(x, y, 1)
p = np.poly1d(z)

# Plot the scatter plot and the trend line
plt.scatter(x, y)
plt.plot(x, p(x), "r--")  # 'r--' is for a red dashed line
plt.title("Scatter Plot with Linear Trend Line")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()

3.添加多项式趋势线

有时,线性趋势线可能不足以捕捉变量之间的关系。在这种情况下,多项式趋势线可能更合适。我们可以使用polyfit()函数,它的阶数更高。

# Calculate the polynomial trend line (degree 2)
z = np.polyfit(x, y, 2)
p = np.poly1d(z)

# Plot the scatter plot and the polynomial trend line
plt.scatter(x, y)
plt.plot(x, p(x), "g-")  # 'g-' is for a green solid line
plt.title("Scatter Plot with Polynomial Trend Line")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()

自定义趋势线

Matplotlib允许对图进行广泛的自定义,包括趋势线的外观。您可以修改趋势线的颜色、线型和宽度。

# Calculate the best-fit line
z = np.polyfit(x, y, 1)
p = np.poly1d(z)

# Plot the scatter plot and the customized trend line
plt.scatter(x, y)
plt.plot(x, p(x), color="purple", linewidth=2, linestyle="--")
plt.title("Scatter Plot with Customized Trend Line")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()

多条趋势线

在某些情况下,您可能希望比较同一散点图上的不同趋势线。这可以通过计算和绘制多条趋势线来实现。

# Generate random data
x = np.random.rand(50)
y = np.random.rand(50)

# Calculate the linear and polynomial trend lines
z1 = np.polyfit(x, y, 1)
p1 = np.poly1d(z1)
z2 = np.polyfit(x, y, 2)
p2 = np.poly1d(z2)

# Plot the scatter plot and both trend lines
plt.scatter(x, y)
plt.plot(x, p1(x), "r--", label="Linear Trend Line")
plt.plot(x, p2(x), "g-", label="Polynomial Trend Line")
plt.title("Scatter Plot with Multiple Trend Lines")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.legend()
plt.show()

总结

在Matplotlib中向散点图添加趋势线是可视化和理解变量之间关系的强大方法。无论您需要简单的线性趋势线还是更复杂的多项式趋势线,Matplotlib都提供了创建信息丰富且视觉上吸引人的图表所需的工具。

到此这篇关于Python使用Matplotlib绘制散点趋势线的代码详解的文章就介绍到这了,更多相关Python Matplotlib散点趋势图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python动态创建类实例详解

    Python动态创建类实例详解

    这篇文章主要为大家介绍了Python动态创建类实例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-12-12
  • Django封装交互接口代码

    Django封装交互接口代码

    这篇文章主要介绍了Django封装交互接口代码,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-07-07
  • Python爬虫过程解析之多线程获取小米应用商店数据

    Python爬虫过程解析之多线程获取小米应用商店数据

    这篇文章主要介绍了Python爬虫过程解析之多线程获取小米应用商店数据,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-11-11
  • python ForMaiR实现自定义规则的邮件自动转发工具

    python ForMaiR实现自定义规则的邮件自动转发工具

    这篇文章主要为大家介绍了python ForMaiR实现自定义规则的邮件自动转发工具示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-12-12
  • python实现一个函数版的名片管理系统过程解析

    python实现一个函数版的名片管理系统过程解析

    这篇文章主要介绍了python实现一个函数版的名片管理系统过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • Python中的进程操作模块(multiprocess.process)

    Python中的进程操作模块(multiprocess.process)

    这篇文章介绍了Python中的进程操作模块(multiprocess.process),文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-05-05
  • Python使用jpype模块调用jar包过程解析

    Python使用jpype模块调用jar包过程解析

    这篇文章主要介绍了Python使用jpype模块调用jar包过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-07-07
  • Python Requests安装与简单运用

    Python Requests安装与简单运用

    requests是python的一个HTTP客户端库,跟urllib,urllib2类似,那为什么要用requests而不用urllib2呢?带着这个问题来一起学习本教程吧
    2016-04-04
  • 使用Matplotlib绘制不同颜色的带箭头的线实例

    使用Matplotlib绘制不同颜色的带箭头的线实例

    这篇文章主要介绍了使用Matplotlib绘制不同颜色的带箭头的线实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • 一文带你全面理解Python中的self

    一文带你全面理解Python中的self

    对于初学Python的同学来说,在class中经常看到self。那么,到底self是个啥?这篇文章小编就来带大家深入了解一下,希望对大家有所帮助
    2023-03-03

最新评论